Algebra Formula Sheet

"Story Problem Formulas"

Formula	Use
A = lw	Area of Rectangle
$A = \frac{1}{2}bh$	Area of a triangle
$A = \pi r^2$	Area of a Circle
$A = \frac{1}{2}(b_1 + b_2)h$	Area of a Trapezoid
I = PRT	Simple Interest
d = rt	Distance traveled
V = lwh	Volume of rectangular solid
$F = \left(\frac{9}{5}\right)C + 32$	Temperature conversion

Slope Equation: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Point-Slope Form of a Linear Equation:

$$y - y_1 = m(x - x_1)$$

Slope Intercept Form of a Linear Equation:

$$y = mx + b$$

Standard Form of Linear Equation:

$$Ax + By = C$$
, $A > 0$ and no fractions

Horizontal Line: y = c

Vertical Line: x = c

Exponent Rules:

Product Rule: $a^m \cdot a^n = a^{m+n}$

Quotient Rule: $\frac{a^m}{a^n} = a^{m-n}$

Power Rule: $(a^m)^n = a^{mn}$

Power of a Product: $(ab)^n = a^n b^n$

Power of a Quotient: $(\frac{a}{c})^n = \frac{a^n}{c^n}$

Zero Exponent: $a^0 = 1$

Negative Exponent: $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$

Dividing a Polynomial by a Monomial:

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

Perfect Square Trinomials:

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

Difference of Squares:
$$a^2 - b^2 = (a+b)(a-b)$$

Difference of Cubes:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Sum of Cubes:
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Zero Factor Property: $ab = 0 \Rightarrow a = 0 \text{ or } b = 0$

Pythagorean Theorem: $a^2 + b^2 = c^2$

Direct Variation: y = kx

Inverse Variation: $y = \frac{k}{x}$

Joint Variation: y = kxz

Radical Rules:

Definition: $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

Product Rule: $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$

Quotient Rule: $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Square Root Property: $a^2 = b \Rightarrow a = \pm \sqrt{b}$

Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint Formula: $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$

Imaginary Numbers:

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Algebra of Functions:

Sum: (f+g)(x) = f(x) + g(x)

Difference: (f-g)(x) = f(x) - g(x)

Product: $(f \cdot g)(x) = f(x) \cdot g(x)$

Quotient: $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$

Composition: $(f \circ g)(x) = f(g(x))$

Logarithmic Definition:

$$y = \log_b(x)$$
 means $x = b^y$

Properties of Logarithms:

Product: $\log_b(xy) = \log_b(x) + \log_b(y)$

Quotient: $\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$

Power: $\log_b(x^r) = r \log_b(x)$

Change of Base: $\log_b(a) = \frac{\log_c(a)}{\log_c(b)}$

$$\log_b(1) = 0$$

$$\log_b(b^x) = x$$

$$b^{\log_b(x)} = x$$